登录

/

注册

首页 > 科技媒体 > 媒体详情
极限挑战,中科大成功“拍照”分子间能量传递过程
金陵 2016-04-01
导语

分子间的能量转移是维系生命及其演化的重要方式,也是实现化学反应、构造分子功能材料的重要手段。中科大董振超小组利用精心设计的局域电场增强的亚纳米空间分辨的电致发光技术,在国际上首次实现在单分子水平上对分子间能量传递特征成功“拍照”。

 分子间的能量转移是维系生命及其演化的重要方式,也是实现化学反应、构造分子功能材料的重要手段。大量的研究表明,分子间的能量转移可以通过分子间的偶极耦合来实现。偶极是表征分子内电荷空间分布的一个物理参量,偶极耦合是分子间库伦相互作用的一种基本形式。直觉上人们通常认为,分子间的能量转移应 该是以递进式的非相干传递来实现的,就像足球队员传球一样,由接受能量的分子传送给相邻的另一个分子,然后依次传递下去。但最新的一些实验表明,一份能量的注入,可能会引起相邻分子间有一定规律的联动,即相干性。但由于受空间分辨的局限,科学界对分子偶极耦合的相干性的形式和特性一直缺乏直接的认识。

最近,中国科学技术大学单分子科学团队的董振超研究小组利用纳腔等离激元增强的亚纳米空间分辨的电致发光技术,在国际上首次实现在单分子水平上对分子间偶极耦合的直接成像观察,即在单分子水平上对分子间能量传递特征成功“拍照”,从实空间上展示了分子间能量转移的相干特征。国际权威学术期刊《自然》杂志于3月31日发表了这项成果。

《自然》杂志的审稿人认为,“这项工作开辟了研究分子间相互作用的新途径”,“对于许多研究领域——从分子间相互作用的基础研究到捕光体系和量子光 学等实际应用,都具有广泛的影响和重要的意义”。《自然》在同期发表的“新闻与观点”栏目中以“耦合分子的特写镜头”为题,对这一物理化学领域的重要进展 进行了专门介绍和报道。 

图注:左图为实验的艺术渲染图。右图为利用亚纳米分辨的光谱成像技术,对锌酞菁染料分子二聚体的各种偶极耦合方式的实空间成像表征。

中国科大单分子科学团队长期致力于发展将扫描隧道显微镜(STM)高分辨静态表征和光学技术高灵敏动态探测相结合的联用系统,特别是通过巧妙调控隧道结纳腔等离激元的宽频、局域与增强特性,极大地丰富了测量和调控手段,拓展了测量极限,为单分子物理化学研究提供了新的机会。近年来,他们在单分子电致发光与拉曼散射方面取得了一系列突破,例如,通过等离激元共振增强实现了分子的反常热荧光和能量上转换电致发光 (Nature Photonics,2010);通过纳腔等离激元双共振调控,实现了亚纳米空间分辨的单分子拉曼光谱成 像 (Nature,2013;Nature Nanotechnology,2015)。

董振超研究小组通过巧妙调控局限在一个纳米腔室内的电场频率和强度,为单分子物理化学研究提供了新的可能性。“局域电场的共振增强调控和STM操纵技术的巧妙结合,使我们得以直接观察分子间相干能量传递的奥秘。”董振超介绍,他们操纵扫描隧道显微镜的针尖,构筑出两个锌酞青分子的二聚体结构,采用电子激发 发光方式,对该结构不同能量状态的偶极耦合模式分别进行了亚纳米空间分辨的电致发光成像。他们发现,局域电子的激发能量瞬间传递到整个分子二聚体,构成了 一个量子纠缠体系,而且该体系不同能量状态(即偶极耦合模式)的光子成像图案具有特定的特征。通过对这些空间特征的分析,可以推导出分子二聚体中能量传递 的相干特征。

以二聚体纠缠体系获得的认识和规律作为指导,他们还进一步构筑了多分子纠缠的人工分子链结构,并通过研究发光最亮的偶极耦合模式的实空间成像特征, 提出了实现可调控的电致“单分子”超辐射荧光的方法。这项研究为深入理解分子体系的相干偶极耦合提供了前所未有的实空间信息,为分子捕光结构的优化以及量 子纠缠光源的制备与调控提供了新的思路。 

文章链接:

Visualizing coherent intermolecular dipole–dipole coupling in real space

董振超教授简介:

中国科学技术大学教授,博导,Email:zcdong@ustc.edu.cn

个人主页:http://www.hfnl.ustc.edu.cn/2010/0407/350.html

研究方向:

 •     Single-molecule optoelectronics by STM
 •     Single-molecule electroluminescence/Electrically driven single-photon sources
 •     Single-molecule Raman scattering
 •     Single-molecule plasmonics/Nano-photonics
 •     Nanocale chemical identification of bio-molecules on surfaces
 •     Plasmon-exciton coupling and energy transfer at the nanoscale

(本文信息来源:中国科技大学;由e科网整理编辑)

如若转载,请注明e科网。

如果你有好文章想发表or科研成果想展示推广,可以联系我们或免费注册拥有自己的主页

  • 中科大
分享到
文章评论(0)
登陆后参加评论
作者 金陵

本科生

北京大学

活跃作者
  • 爱因斯坦 科研工作者 北京航空航天大学 博士
  • 金陵 本科生 北京大学 本科
  • 梅西 本科生 北京工业大学 本科


发布成功!

确 定 关 闭