The development of nanoprobes with high sensitivity and specificity for tumor marker detection has gained increasing attention in biological applications. Here, we have designed and synthesized a novel 4,4',4”,4”'-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis (1-(4-bromobenzyl)pyridin-1-ium) bromide (TPE-4N+) based aggregation induced emission (AIE) fluorescent sensor and it gives rise to electrostatic adsorption towards hyaluronic acid (HA), resulting in an effective emission recovery in yellow-greenish region. In the presence of hyaluronidase (HAase), the enzymatic digestion between HA and HAase induces the fluorescence quenching and this “on-off” change has been analyzed by two consecutive linear equations. The low detection limit is determined to be 0.02 U/mL by quantitative evaluation and its practical application has been verified by detecting human urine samples. It is promising that this new approach can be utilized to study a wide variety of other depolymerization reactions.