图:科学家希望研制出等离子体推进器,为进入太空后的宇宙飞船和卫星提供动力。该技术可提供强大推力,同时电极不至于暴露在等离子体中,大大减少了损耗。
北京时间7月18日消息,据国外媒体报道,研究人员通过一系列新实验弄清了影响等离子体流动的因素,有助于无电极等离子体推进器的研发。
我们知道,太空中的磁场线会在等离子体的影响下延伸,导致磁场增强;但实验室中的情况恰好相反,磁场强度不增反减。
研究人员正以此为基础研制等离子体推进器。在开放磁场中,等离子体流动速度加快、从而推动飞船前进。
科学家已经找到了等离子体在产生推力的同时、还能使磁场向太空中延伸的过渡点,这有助于攻克该技术面临的一大挑战。
等离子体是一种由带电粒子构成的极高温气体,宇宙中几乎无所不在,且会受磁场等环境力的影响。
日本东北大学的研究人员指出,等离子体在太空和实验室中的复杂表现说明,它可以产生与施加的磁场方向相反的磁场。两者的磁场线会互相排斥,就像两块同极相对的磁铁一样。
近年研制的等离子体推进器需要依靠磁喷管(简称MN),但该技术面临不少挑战。在实验室中,磁场为闭合状态,磁场线调头朝向宇宙飞船,导致等离子体也调转方向,使得总推力正负抵消、总和为零。
为解决这一问题,研究人员分析了磁场被延伸至无限长时的情况。凭借此做法,该团队观察到了介于两种等离子态之间、磁场线互斥并向外延伸的过渡阶段。
该团队发现,当他们在磁场下游区检测到磁场线延伸时,等离子体便处于上述过渡阶段。而如果发生在上游区,等离子体便仍会导致磁场线互斥。
图:研究人员正以此为基础研制等离子体推进器。在开放磁场中,等离子体流动速度加快、从而推动飞船前进。图中施加的磁场线以蓝色表示,受等离子体影响而变化的磁场线以红色表示。
研究结果不仅说明等离子体能够在产生推力的同时、使磁场向太空中延伸,而且延伸速度比此前预期的要慢。虽然相差不多,但研究人员认为,这已经是将等离子体与磁喷管分离的巨大进步。
科学家希望研制出等离子体推进器,为进入太空后的宇宙飞船和卫星提供动力。该技术可提供强大推力,同时电极不至于暴露在等离子体中,大大减少了损耗。
文章链接:
Kazunori Takahashi and Akira Ando, "Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle," Physical Review Letters, doi.org/10.1103/PhysRevLett.118.225002
(本文来源:新浪科技;)
如若转载,请注明e科网。
如果你有好文章想发表or科研成果想展示推广,可以联系我们或免费注册拥有自己的主页
- 等离子体
- 电推进器