用注射器将微型电子芯片注入人体,发挥功用后的芯片自动溶解在人体之中,这似乎是只能在科幻电影里才能见到的场景,而如今柔性瞬态电子器件的开发将这一想象变为可能。
近日,天津大学精仪学院生物微流体和柔性电子实验室的黄显教授与密苏里科技大学Heng Pan教授共同完成一系列探索,在瞬态电子制造领域取得重大突破,实现了在低温状态和无水环境下的柔性瞬态电子器件的加工。相关研究成果在线发表在电子和材料领域国际权威学术刊物《Small》和《Advanced Materials》上。黄显教授是这两篇文章的通讯作者。
可溶性生物降解材料如手术缝合线已经被广泛应用在医学领域,逐渐被公众所熟知,但科学家们对生物可溶性材料的开发应用远不止于此。近几年,越来越多的研究集中于利用生物可溶性材料开发功能性器件,瞬态电子器件应运而生。瞬态器件又称生物可溶性器件,是指能够在可控的时间内工作,完成工作后器件溶解在所处的环境中且不产生有毒有害的物质。
瞬态器件在植入式医疗和环境保护领域具有巨大的应用前景,使用生物可溶性材料制作的电子设备一旦植入到人体, 在完成其功能后,能够自行溶解在体内,无需二次手术,既能减轻病人的痛苦,还能减少医疗资源的浪费。此外,使用生物可溶性材料所开发的电子元器件,在其功能完成之后可溶解于水中,便于将电路上的电子元件回收,还不会产生环境污染。
虽然瞬态器件在健康和环保领域有巨大应用前景,却并未实现市场化。其加工方法繁琐,工艺和选材上受到很大限制是原因之一。生物可溶性材料大都基于对于湿度和温度敏感的可溶性材料,易与集成电路常用的各种包含羟基的溶剂发生反应。另外,生物可溶性聚合物的熔点或玻璃化温度较低,不适合生产传统电子元器件的高温加工方法。
传统的瞬态器件加工方法非常复杂费时,需要依靠特殊的手工转印方法,在常规基底上加工得到的结构转印到生物可溶性基底上。一个典型的瞬态器件的生产往往需要花费将近一周的时间以及近千元的成本。
为了解决瞬态器件加工成本高工艺繁琐的难题,天津大学精仪学院黄显教授设计研发出两项柔性瞬态电子器件加工新技术——光脉冲烧结和激光蒸镀,实现在低温状态和无水环境下瞬态器件的低成本制造。这两项技术分别发表在电子和材料领域国际权威学术刊物《Small》和 《Advanced Materials》上。
黄显教授的团队以对生物体本身无害的金属锌为原料,采用球磨方法,将锌的纳米颗粒打磨到100纳米以内,从而获得瞬态金属纳米颗粒。研磨后纳米粒子好比“墨水”,利用先进的光脉冲的方式,将“墨水”直接烧结到可溶解的聚合物基底上,从而“绘制”出高导电性瞬态金 属图案。导电率高达44 643 S m-1,创造了目前基于印刷方式的瞬态金属颗粒导电率的最高记录。
第二种激光蒸镀技术,则是通过激光扫描锌纳米颗粒的方式制造导电瞬态金属图案。将锌纳米颗粒沉积在玻璃片上并进行激光扫描,锌纳米颗粒会由于激光加热而形成锌的蒸汽,最终在生物可溶性基底上冷凝沉积。通过对玻璃片和生物可溶性基底之间距离的控制,来控制蒸汽沉积的速率,还可以通过控制激光的速度与扫描路线来设计图案,控制每一位点的导电性能(最高可达1.1×106 S m-1)。
黄显教授团队研发的这两项技术为全球瞬态电子制造领域首次应用,克服了瞬态金属纳米颗粒易受空气中的氧气和水分影响的缺点,为瞬态电子技术的发展提供了重要的加工方法。通过该方法制造的瞬态器件具有高导电性、低温安全、无污染的特点,其形态轻薄、可弯可折,平均厚度不超过10微米,不到头发丝直径的十分之一。
这项研究技术极大地减小了瞬态器件的使用成本,使得瞬态器件更大程度地与人们的日常生活相结合。为人类健康监测、诊断、治疗和康复提供新的解决方案。这项研究还会极大改变现在的印刷电路工业及其相关产业,如材料的供给、加工设备的生产和电子元件的回收。未来,瞬态电路极有可能会代替那些永久性的电路应用于诸如便携式设备、家用电器和其它消费产品中。
黄显教授介绍:
黄显博士,天津大学精仪学院生物医学工程系教授,亿科创新智库特邀专家。
2015年入选中组部国家青年千人计划、获天津大学北洋学者和天津市青年千人。2014-2016年担任美国密苏里科技大学的助理教授。曾负责与承担了近十项美国的联邦基金项目和州政府项目。2011-2014年在美国伊利诺伊大学从事博士后研究。
黄显教授带领的天津大学生物微流体和柔性电子实验室团队以瞬态可溶性电子、柔性生物传感器和柔性表皮电子的研究为主。实验室拥有集成了生物微流体和柔性电子加工、测试和仿真为一体的开放性研究平台。
黄显教授多年来从事生物传感器的研究,发明了植入式亲合力测量葡萄糖微传感器、多种表皮集成的柔性传感器、和生物可溶性传感器。目前已发表包括Science、Advanced Materials、Advanced Functional Materials和Nature Communications在内的SCI检索论文30余篇。总引用量达1400余次。申请专利6项,其中1项已获授权。其研究的植入式葡萄糖传感器获得美国糖尿病技术协会的研究金奖。应邀为包括Weily、Cambridge和Royal Society of Chemistry等著名出版社就柔性传感器和可溶性电路撰写图书章节。
文章链接:
1, Bikram K. Mahajan, et al, "Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics," Small, Volume 13, Issue 17, May 3, 2017, 1700065,DOI:10.1002/smll.201700065
2, Wan Shou, et al, "Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation–Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles," Advanced Materials, DOI:10.1002/adma.201700172
(本文来源:天津大学新闻网;)
如若转载,请注明e科网。
如果你有好文章想发表or科研成果想展示推广,可以联系我们或免费注册拥有自己的主页
- 天津大学
- 柔性电子器件