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We solve a model that has basic features that are desired for quantum annealing computations:
entanglement in the ground state, controllable annealing speed, ground state energy separated by a gap
during the whole evolution, and a programmable computational problem that is encoded by parameters of
the Ising part of the spin Hamiltonian. Our solution enables exact nonperturbative characterization of final
nonadiabatic excitations, including a scaling of their number with the annealing rate and the system size.
We prove that quantum correlations can accelerate computations and, at the end of the annealing protocol,
lead to the perfect Gibbs distribution of all microstates.
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Many optimization problems can be reformulated in
terms of searching for a configuration that minimizes a
Hamiltonian HAðs1;…; sNÞ of N Ising spins sj [1–3]. This
task is often so complex that it cannot be solved with
modern computers. The idea of quantum annealing (QA) is
to treat the Ising spins as z components of quantum spins
1=2, ŝj, and realize quantum evolution with a Hamiltonian

ĤðtÞ ¼ ĤAðŝz1;…; ŝzNÞ þ gðtÞĤBðŝ1;…; ŝNÞ; ð1Þ

where ĤB has a ground state that overlaps with all possible
QA outcomes and does not discriminate against some of
them at the start. Parameter gðtÞ is large at t ¼ 0 but decays
to zero at t → ∞. According to the adiabatic theorem, a
system that is initially in the ground state remains in the
instantaneous ground state if the lowest energy is always
nondegenerate and parameters change sufficiently slowly.
So, as we illustrate in Fig. 1(a), slow decay of gðtÞ converts
the ground state of ĤB into the ground state of ĤA, which is
then read by measuring spins along the z axis.
In practice, the annealing time is restricted, so

nonadiabatic excitations become inevitable [4–7].
Nevertheless, at N ≫ 1, there are optimization problems
with some error tolerance. In this Letter, we solve a
minimal model of QA and show the following: (i) The
tolerance of a computational goal to a small number of
errors allows QA protocols that introduce extra quantum
correlations in order to reduce the required computation
time by a factor ∼1=N in comparison to the conventionally
justified QA time. (ii) The distribution of nonadiabatic

excitations in a closed quantum system after QA can be
completely thermalized. (iii) This thermalization is
encoded in integrability, i.e., the possibility to describe
the behavior analytically.
The first property justifies the error-tolerant QA

computation technology, the second one proves that aver-
aging over unknown conditions is not needed to find

FIG. 1. (a) During QA, the entangled ground state is trans-
formed adiabatically into the ground state of the Ising spin
Hamiltonian. (b) Evolution of the spectra of the QA Hamiltonian
(3) in nonadiabatic (g ¼ 1=N, top) and nearly adiabatic (g ¼ 1,
bottom) regimes. The ground level is marked by red color. Here,
N ¼ 12, Sztot ¼ 0, εj ¼ j=N þ ξj, and ξj are uniformly distrib-
uted random real numbers from the range ( − 1=ð2NÞ; 1=ð2NÞ).
The inset shows exact level crossings indicating the model’s
integrability.

PHYSICAL REVIEW LETTERS 121, 190601 (2018)

0031-9007=18=121(19)=190601(5) 190601-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.190601&domain=pdf&date_stamp=2018-11-06
https://doi.org/10.1103/PhysRevLett.121.190601
https://doi.org/10.1103/PhysRevLett.121.190601
https://doi.org/10.1103/PhysRevLett.121.190601
https://doi.org/10.1103/PhysRevLett.121.190601


thermalization in coherent evolution, and the third one
counters the common belief, taking roots in the numerical
experiment by Fermi, Pasta, Ulam, and Tsingou [8], that
complete thermalization is incompatible with integrability.
Initial quantum correlations are not required for QA but

our goal here is to learn if they can be a resource for
accelerated computations. The simplest Hamiltonian of N
spins with entanglement in the ground state is all-to-all
coupling [9–11], ĤB ¼ −

P
N
i≠j ŝ

þ
i ŝ

−
j , restricted to a sector

with a conserved total spin. The ground state of ĤB is the
sum of all eigenstates of ĤA with the same Sztot ¼

P
N
j¼1 s

z
j:

jψ0i ∼ j↑↑ � � �↓↓i þ j↑↓ � � �↑↓i þ � � � þ j↓↓ � � �↑↑i:
ð2Þ

The simplest to write QA protocol is the inverse time decay,
gðtÞ ¼ g=t, where t ∈ ð0þ;∞Þ, g is a constant; and the
simplest Ising Hamiltonian is ĤA ¼ P

N
j¼1 εjŝ

z
j, where the

vector of constant parameters, ε ¼ ðε1;…; εNÞ, is program-
mable for computations. So, the minimal QA Hamiltonian
for our goals is

ĤBCSðtÞ ¼
X
j

εjŝ
z
j −

g
t

X
j≠k

ŝþj ŝ
−
k ; j; k ¼ 1;…; N: ð3Þ

Let Sztot ¼ 0 and all constants εj be nondegenerate. The
ground state ofHA has then N=2 spins down and N=2 spins
up; all down spins have larger εj than all up spins. Hence,
QAwith ĤBCS solves an array sorting problem: to find N=2
indices j that mark the largest εj.
The time-independent version of ĤBCS is equivalent to

the Bardeen-Cooper-Schrieffer model of superconductivity
[12]. Its nonequilibrium dynamics has attracted consider-
able interest both experimentally [13,14] and theoretically
[15,16]. Recently, the time-dependent model (3) was
proved to be integrable [17], but its solution for arbitrary
t in terms of repeated contour integrals [18] is too complex
to reveal physical properties of QA. Therefore, here we will
develop a different approach that will target the desired
characteristics directly.
Deviation from adiabaticity is controlled continuously in

ĤBCSðtÞ, as shown in Fig. 1(b): the ground level is always
separated by a gap from the rest of the spectrum but
approaches other levels slower when g is larger. Precision
of QA is usually characterized by the probability PG to
remain in the ground state at t → ∞. According to the
Landau-Zener formula, PG is determined by the size of
the energy distance Δ to the nearest energy level and
the characteristic rate β with which this gap changes:
PLZ ¼ 1 − e−2πΔ

2=β. At t → ∞, the ground level of ĤBCS
is separated from the lowest energy excitation by
Δ ¼ jεi − ϵjj, where i and j are indexes of spins for which
this energy difference is minimal. Coupling between these
spins becomes comparable to Δ at the effective annealing
time τ ∼ g=Δ, and the characteristic rate with which this

coupling changes is β ¼ jdðg=tÞ=dtjt¼τ ¼ Δ2=g. This leads
to the rough estimate in the adiabatic limit: PG ∼ 1 − e−2πg,
which we confirm in Fig. 2(a) by comparing to numerical
results. Hence, values g > 1 correspond to adiabatic QA.
To understand the regime at g < 1, we assume in what

follows that 0 < ε1 < ε2 < � � � < εN , and introduce a new
accuracy characteristic:

η≡ ð4=NÞ
XN=2

k¼1

szk; ð4Þ

where szk is the outcome of the kth spin polarization
measurement. The ground state of ĤA at Sztot ¼ 0 has
η ¼ 1. Excitations reduce η; e.g., η ¼ 0 means a complete
loss of valuable information.
In Fig. 2(b) we show time dependence of the mean value

hηi at different g, obtained by solving the Schrödinger
equation with ĤBCS for N ¼ 12 numerically. Saturation of
hηi means that one can interrupt the evolution at finite t
without loosing accuracy. Final hηi is growing with g and at
g ¼ 1=N it reaches values hηi > 0.6, at which over 80% of
spins point correctly along their ground state directions. At
g < 1=N, the time to saturation is mostly defined by the
energy parameters εj and almost does not change with g.
For g > 1=N, this time is growing and becomes about a
factor N longer at g ¼ 1 than at g ¼ 1=N, in agreement
with our rough estimate τ ∼ g=Δ. Figure 2(b) also suggests
that hηi ¼ 1 −Oð1=NÞ is reached at values of g outside the
adiabatic regime. However, numerical simulations are not
decisive here because they are restricted to small N. So, we
will develop an analytical approach that will confirm this
expectation.
To understand behavior at arbitrary N, we recall that

ĤBCS commutes with N Gaudin Hamiltonians [20]:

Ĥj ¼ tŝzj − 2g
X
k≠j

ŝj · ŝk
εj − εk

; k; j ¼ 1;…; N;

FIG. 2. (a) The probabilities to remain in the ground state at
different g and N. Solid curves and the limit N → ∞ (black dashed
curve) are predictions of Eq. (12) and pointmarkers are the numerical
results [19]. (b) Time dependence of computation accuracy. Solid
curves are results of the numerical solution for the Hamiltonian
ĤBCSðtÞ with N ¼ 12, Sztot ¼ 0, and the same εj as in Fig. 1(b).
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which also satisfy conditions: ∂εj ĤBCS ¼ ∂tĤj and

∂εj Ĥi ¼ ∂εi Ĥj for all i, j. According to [17], this property
is what makes the model (3) analytically solvable.
Following [17], we introduce multitime vector t, where
t0 ≡ t, tj ≡ εj and write an operator of evolution in this
multitime space

Û ¼ T̂ exp
�
−i

Z
P

XN
μ¼0

Ĥμdtμ
�
; Ĥ0 ≡ ĤBCS:

Û does not depend on the path P, except its initial and final
points. This invariance follows from the fact that the gauge
field with components Aμ ¼ −iĤμ has zero curvature.
Hence, its integral over any closed path that does not
enclose singularities of Ĥμ is zero [17].
Let us compare two evolution paths shown in Fig. 3 that

start at vector ε at t ¼ 0þ (point a) and end at t → ∞ at
vector ε̄ (point d) such that two adjacent in magnitude
vector components are related by ε̄j ¼ εjþ1 and ε̄jþ1 ¼ εj
for one and only one j, while in all other respects ε and ε̄
are identical. These paths have to avoid the singularity of
Ĥj − Ĥjþ1 at εj ¼ εjþ1, so the difference ε− ≡ εj − εjþ1 is
allowed to be complex valued.
At the path a → b → d, evolution matrix V along the

link ðabÞ reverses the sign of ε− keeping other parameters
constant. Next, at ðbdÞ, we keep ε̄ constant and evolve to
the end point at t → ∞ with the evolution matrix Sε̄. At the
other path a → c → d we initially evolve, with the evolu-
tion matrix Sε, along the real time to a point at large t and
then reach the end point, with the evolution matrix V 0, at
constant t. The invariance of Û means that

Sε̄Vjψ0i ¼ V 0Sεjψ0i: ð5Þ

We will use Eq. (5) to compare amplitudes of evolution
along real t from jψ0i to states jji ¼ j…;↑j;↓jþ1;…i and
jj̃i ¼ j…;↓j;↑jþ1;…i that are different only by directions
of two spins with neighboring εj and εjþ1.
Consider first the link ðabÞ in Fig. 3. Suppose that

initially εj < εjþ1. We keep εj þ εjþ1 constant, so

Z
Hjdεj þ

Z
Hjþ1dεjþ1 ¼ ð1=2Þ

Z
ðĤj − Ĥjþ1Þdε−:

The evolution operator for this link is

V ¼ T̂ exp

�
−ði=2Þ

Z
PðabÞ

ðĤj − Ĥjþ1Þdε−
�
: ð6Þ

All Ĥμ commute, so jψ0i is the eigenstate of not only ĤBCS

but also of Ĥj − Ĥjþ1. Hence, hαjðĤj − Ĥjþ1Þjψ0i ¼ 0 for
jαi⊥jψ0i. We calculate jhψ0jVjψ0ij bypassing the singu-
larity at εj ¼ εjþ1 along the semicircle of radius r in the
complex ε− plane. Only the piece of this path with nonzero
Imðε−Þ contributes to the absolute value. In the limit
r → 0 at t ¼ 0, we have Ĥj − Ĥjþ1 → −4gŝj · ŝjþ1=ε−.
For ε− ¼ reiϕ, we find

jhψ0jVjψ0ij ¼ e−2g
R

0

π
dϕhψ0jŝj·ŝjþ1jψ0it¼0 ¼ eπg=2: ð7Þ

Consider now the link ðcdÞ, at which t → ∞. If
n ≠ j, jþ 1 we have Ĥn ¼ tszn þOð1Þ. Hence, such
Hamiltonians are proportional to spin operators, and
commutation of Ĥn with Ĥj − Ĥjþ1 means the conserva-
tion of szn during the evolution along this link, i.e.,
hjjV 0jαi ¼ 0 if jαi has different from jji value of a spin
with index n. Transitions between states jji and jj̃i,
however, should be treated with extra care because Ĥj

and Ĥjþ1 are singular near εj ¼ εjþ1 where the conserva-
tion of spins with indexes j and jþ 1 breaks down. So, we
set the evolution between points c and d along a semicircle
with a finite radius in Fig. 3, restricting this evolution to the
subspace of states jji and jj̃i.
Let us again change variables so that ε− ¼ bs=t, where

b=t → 0 and b > 0 is finite. The large parameter t then
drops out of the evolution equation along ðcdÞ:

i
djψi
ds

¼
�
bþ g=ð2sÞ κ=s

κ=s −bþ g=ð2sÞ

�
jψi; ð8Þ

where jψi ¼ cjðtÞjji þ cj̃ðtÞjj̃i with amplitudes cj and cj̃;
s changes along a semicircle s ¼ Reiϕ with R → ∞, and ϕ
decreases from π to 0. Parameter κ is a constant that
depends on states of all spin directions in jji. In (8), we
dropped all terms that decrease faster than ∼1=R.

FIG. 3. Two paths corresponding to the same evolution oper-
ator. Evolution takes place over the space of real time t and
complex values of ε− ≡ εj − εjþ1. The initial point a corresponds
to t ¼ 0þ and εj < εjþ1. The final point d is at t → ∞ and
ε̄j ¼ εjþ1, ε̄jþ1 ¼ εj. The red path a → b → d avoids the
singularity at ε− ¼ 0 from the infinitesimally small distance r
at t ¼ 0þ, and the blue path a → c → d avoids this singularity at
t → ∞ along the arc ðcdÞ with a finite radius. Evolution over
links ðabÞ, ðbdÞ, ðacÞ, and ðcdÞ is described by matrices,
respectively, V, Sε̄, Sε, and V 0.
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This evolution was already studied in Ref. [21], accord-
ing to which we can disregard the vanishingly small off-
diagonal terms κ=s in calculation of the diagonal elements
of V 0:

jhjjV 0jjij ¼ e−2g
R

0

π
dϕhjjŝj·ŝjþ1jji ¼ e−πg=2: ð9Þ

As for the off-diagonal elements of V 0, such an adiabatic
approximation can be justified only if the initial state has
the lower energy at s → −∞. Only then cannot the
evolution along the complex time contour lead to growth
of the interlevel transition amplitude [21]. For εj < εjþ1

this means that

hjjV 0jj̃i ¼ 0; εj < εjþ1; ð10Þ

independently of κ but we generally have hj̃jV 0jji ≠ 0. The
latter element does not appear in the following calculations
but we note that such a nonzero term would be relevant
if the singularities were enclosed by the paths with
Imðε−Þ < 0 instead of those in Fig. 3.
Evolution along t at constant ε̄ is the same as

at ε but with exchanged spin indexes: j ↔ jþ 1. So,
hjjSε̄jψ0i ¼ hj̃jSεjψ0i. The probabilities to find the micro-
states jji, jj̃i at fixed ε and t → ∞ are then Pjji ¼
jhjjSεjψ0ij2 and Pjj̃i ¼ jhjjSε̄jψ0ij2. Multiplying both sides
of Eq. (5) by hjj from the left, and using (7), (9), and (10),
we find that transition probabilities from jψ0i to the two
states are related:

Pjj̃i=Pjji ¼ e−2πg; εj < εjþ1: ð11Þ

Equation (11) is valid for any index j and arbitrary values
of all parameters εk ∉ ðεj; εjþ1Þ and spin projections szk in
jji for k ≠ j, jþ 1. It has the form of the detailed balance
condition that is possible to satisfy only if the probability to
find any final eigenstate of ĤA, jfszgi≡ jsz1; sz2;…; szNi, is
given by the Gibbs distribution

Pfszg ¼
1

Z
e−2πg

P
N
j¼1

jszjδ

�XN
j¼1

szj − Sztot

�
; ð12Þ

where 1=Z is a normalizing factor. In Fig. 4(a), we test
Eq. (12) numerically and illustrate that generally spins align
along their ground state directions at g ≪ 1, i.e., in strongly
nonadiabatic regime. The independence of Pfszg of εj,
except the relative order of these parameters, is the property
shared by many solvable time-dependent models for
reasons discussed in [22]. A simpler proof of this inde-
pendence is via relation (5) applied to a situation with ε and
ε̄ different only by continuous changes that keep all vector
components real and nondegenerate. Pieces of evolution in

Fig. 3 with t ¼ const then do not contribute to transition
probabilities at all, and (5) leads to relation jSεj ¼ jSε̄j.
The Gibbs distribution may not describe the thermalized

state of the right Hamiltonian. However, for equidistant
spin splittings, εj ¼ εj, the distribution (12) does corre-
spond to ĤBCS at t → ∞; i.e., we find a complete thermal-
ization in this case, as we announced in (ii), at temperature

T ¼ ε=ð2πkBgÞ;

where kB is the Boltzmann constant.
To derive coarse-grained characteristics at N ≫ 1, it is

safe to replace the delta function in (12) by a weaker
constraint that equates only the average spin to Sztot (see
Supplemental Material [19] for details of calculations,
which includes Refs. [23,24]). This leads to

hηi ≈ 2

πgN
½logð1þ eπgNÞ − log 2� − 1; ð13Þ

which we confirm in Fig. 4(b), and from which we find that
to achieve accuracy hηi at conditions Sztot ¼ 0, N ≫ 1,
g ≫ 1=N, we should set g ¼ 2 log 2=½πNð1 − hηiÞ� that is
far from the adiabatic regime at N → ∞, proving (i).
For example, if g ¼ 0.01, i.e., calculations are 100 times

faster than the adiabatically protected ones, the probability
of a wrong result per spin is ð1 − hηiÞ=2 ≈ 22=N, for
N ≫ 1, and only 20–25 errors appear totally in the limit
N → ∞. We note that experiments with the BCS
Hamiltonian in ultracold atoms deal with N ∼ 106 fermions
[25], in which BCS coupling can be controlled by time-
dependent fields.
Our solution illustrates the importance of quantum

correlations that are introduced by ĤB: collective effects
help some of the spins to settle much earlier in time
[Fig. 4(a)]. The remaining spins in turn feel this, which
helps them to find their own ground state directions faster

FIG. 4. (a) The final polarization of several spins for N ¼ 12
and Sztot ¼ 0. Prediction of the Gibbs distribution (solid curves) is
compared to numerical solution of the Schrödinger equation
(point markers) [19]. Here, εj are the same as in Fig. 1.
(b) Accuracy of QA at different g and N at t → ∞. Points show
exact predictions of Eq. (12), and solid lines are the large-N
approximation (13).
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while satisfying the total spin conservation constraint. If,
otherwise, we had set ĤB ¼ P

N
i¼1 ŝ

x
i , i.e., if we were

looking for the ground state of permanently uncoupled
spins, we would find the final hηi independent of N and
decaying quickly at g < 1, independently of the choice
of εj.
This proves that strongly interacting QA dynamics can

be studied exactly beyond the models of noninteracting
fermions and their equivalents [26]. Unlike these models,
the simplicity of the final distribution (12) rather reflects the
facts that gðtÞ ∼ 1=t is scale free and the model (3) likely
has no conservation laws, except Sztot ¼ const. The latter
difference leads to essentially different behavior of error
probabilities in the nonadiabatic regime. Thus, the QA
models that are equivalent to sets of independent two-level
systems, such as the quantum Ising chain in a transverse
magnetic field [26], inevitably predict the linear scaling of
the number of computational errors with growingN at other
conditions fixed. In contrast, our model shows a vanishing
error probability per spin in the limit of large N in the
nonadiabatic regime at a fixed driving protocol and spin
coupling distribution. This observation suggests that QA
protocols with a strongly entangled initial state may
provide considerable boost to the accuracy of QA compu-
tations. Further experimental and numerical evidence in
support of this conclusion is still needed to understand the
advantages of this approach.
Quantum thermalization is usually associated with semi-

classical chaos that makes local operator expectations in
typical eigenstates close to thermal ensemble averages
[27,28]. We showed, however, that also regular fields
can steer coherent reversible evolution toward the perfect
Gibbs distribution of all independent eigenstates of a
Hamiltonian. The emergence of the strong detailed balance
constraint, which enables this thermalization, would be
impossible without the symmetry responsible for the
model’s integrability. So, integrability is not only compat-
ible but it is needed naturally to find the Gibbs distribution
after QA. In [19], we support this conclusion by showing
that the model’s symmetry reflects the invariance of the
evolution matrix under action of the braid group and the
associated with it quantum group SUqð2Þ [29–31], where
the deformation parameter q≡ e−ε=2kBT defines the temper-
ature scale.
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