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Anilines are among the most common and important chemi-
cals, and are widely applied in the synthesis of natural prod-
ucts, pharmaceuticals, agrochemicals, dyes and polymers1. 

One of the most step- and atom-economic approaches to the syn-
thesis of anilines is to decorate the aromatic hydrocarbons directly 
with the NH2 group2,3. However, the direct incorporation of the 
NH2 moiety to alkylarenes through C–H and/or C–C bond cleav-
age has three formidable challenges: (1) the high bond dissociation 
energy, (2) the potential competitive chelation of aniline products to 
the catalyst and (3) the instability of aniline products under strong 
oxidative conditions. Apart from the traditional nitration/hydroge-
nation process under harsh conditions4 and the Buchwald–Hartwig 
type of cross-coupling with aryl halides5–9 or arylmetals10–12, efficient 
approaches to anilines through C–H primary amination have been 
elegantly developed using electrochemical catalysis13, photoredox 
catalysis14,15 or novel electrophilic amination reagents16 (Fig.  1a). 
Despite the breakthroughs in C–H primary amination, there 
remain some unresolved issues. The reported aminations of arenes 
are hindered by the limited control of regioselectivity between the 
para- and ortho-products, the difficulty to carry out the selective 
meta-amination of electron-rich arenes and the challenging amina-
tion of electron-deficient arenes (Fig. 1b).

Alternatively, a more straightforward route to incorporate the 
NH2 group into substituted arenes would be via a site-directed C–C 
bond cleavage17–25 to form substituted anilines. We envision that this 
strategy will open new opportunities to functionalize inert bonds 
and provide a chance to prepare primary anilines via the position 
of the C–C bond cleavage. Alkylarenes are readily available from 
coal and crude oil, and offer a fertile test ground for the invention 
of new chemical transformations in both the academic and indus-
trial fields. The cumene–phenol process (Hock process), which pro-
duces more than nine million tonnes of phenol per year, represents 
one of the most successful transformations of alkylarenes (Fig. 1c)26. 
However, to the best of our knowledge, the highly attractive trans-
formation from cumene to aniline is still unknown because of the 
non-polar inert chemicals and the high bond dissociation energy. 

In the case of ethylbenzene and cumene, the bond dissociation 
energy of the C(sp2)–C(sp3) bond (98–100 kcal mol–1) is higher than 
that of C(sp3)–C(sp3) bonds (76–77 kcal mol–1)27,28. Additionally, the 
C(sp2)–C(sp3) bonds are surrounded and hindered by more C–H 
and C–C bonds. Therefore, such C–C σ bonds are thermodynami-
cally stable and kinetically inert (Fig. 1c), which, in turn, has led to 
direct C–C bond functionalization29–37 being underdeveloped. Here 
we report a previously elusive C–C amination protocol for aniline 
synthesis from simple and readily available alkylarenes or substi-
tuted benzyl alcohols to achieve a site-directed aniline preparation. 
This chemistry proposes a novel C–C bond transformation. The 
most common linkage motifs in lignin could also be cleaved into the 
corresponding anilines, which demonstrates a potential extraction 
of higher value from the waste lignin product in the pulp and paper 
industry38,39. Notably, this transformation can also be accomplished 
with O2 as the environmentally benign oxidant.

Results and discussion
In line with the nitrogenation of the simple hydrocarbons40–42, we 
hypothesized that a suitable nitrogen source could enable this direct 
C–C amination from the readily available alkylarenes. We initially 
investigated the reactions of 4-isopropyl-1,1′​-biphenyl (1a) with 
different nitrogenation reagents. Unfortunately, some nitrogen 
sources, such as tert-butyl nitrite, NaNO2, AgNO2, NH2OH·HCl and 
N-sulfonyl azide, in common solvents failed to provide the desired 
primary anilines (Supplementary Table 3). Interestingly, the reac-
tion in the presence of NaN3, which is readily available and features 
a lower toxicity and volatility than other azide reagents43, afforded 
the aniline product 2a​ in a 70% yield under air with 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ) as the oxidant (Table 1, reac-
tion A). The oxidant and pKa value of the acid are vitally important 
for this transformation. Other oxidants, such as tert-butyl hydro-
peroxide, N-fluorodibenzenesulfonimide, Selectfluor and Oxone 
showed a low efficiency.

Inspired by these results, we envisioned that the redox-neutral C–C 
amination is more attractive. Thus, the simple secondary alcohols,  
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which are also easily accessible, were investigated in the absence 
of oxidant. Excitingly, the simple secondary alcohols 3 could also 
be efficiently transformed into the anilines in n-hexane with acid 
as an additive instead of solvent. This demonstrates another path-
way without the use of oxidant (Table 1, reaction B) that provides a 
milder protocol and widens the scope of this transformation.

Having developed the optimum conditions, the scope of this 
C–C amination reaction was then investigated with both alkylar-
enes and benzyl alcohols as substrates (Table 1). Various para-sub-
stituted anilines were efficiently synthesized with the corresponding 
isopropylbenzenes and secondary alcohol derivatives regardless of 
the electronic properties of the substrates. For example, halogenated 
isopropylbenzene and benzyl alcohols endured to deliver the site-
specific anilines (2b​, 2g​ and 2h​), respectively, to leave the halogens 
available for downstream synthetic manipulation. It is notewor-
thy that the electron-withdrawing anilines, which are inaccessible 
through C–H amination, could also be efficiently synthesized 
using this newly developed method (2m​, 2n​ and 2p​)13–16. Moreover, 
the carboxylic group, which is generally known to undergo the 
undesired Schmidt reaction under acidic conditions, remained 
unchanged in this C–C bond functionalization, albeit in low yield 
due to isolation problems (2p​), which highlights the high chemose-
lectivity of this transformation. The potentially sensitive unpro-
tected hydroxyl group (2o​) and the free amine group (2u​) were also 
compatible with this C–C amination process.

As expected, ortho-substituted anilines were prepared through 
the benzyl alcohols. Notably, compared with the traditional nitra-
tion and hydrogenation of the corresponding bromobenzene, 
2-bromoaniline (2q​) was synthesized through this site-directed 
C–C activation efficiently and selectively without the cumber-
some isolation operation of the mixed regioisomers44. Excitingly, 
meta-substituted anilines with different functional groups, which 
originally could not be directly synthesized through the traditional 
electrophilic C–H amination process13–16, can now be prepared effi-
ciently by this C–C amination protocol (2u​–2za​, Table 1). We then 
investigated alkyl scope of the C(Ar)–C(alkyl) bond cleavage in the 
alkylarenes C–C amination process (4a–4e). As shown in Table 2, 
alkylarenes that bear a series of alkyl groups (Et, i-Pr, n-Bu, Bn and 
Cy) could be selectively cleaved.

From a green and sustainable chemistry aspect, O2 has been 
considered an ideal oxidant. We therefore decided to test the use of 
O2, instead of DDQ, as the oxidant in the direct C–C amination of 

alkylarenes. Notably, the readily available industrial feedstocks eth-
ylbenzene (4a), cumene (4b) and 4-isopropyl-1,1’-biphenyl (1a) all 
performed well, and produced the corresponding anilines products 
in moderate yields by using an aerobic oxidation/hydrogenation 
process with 1 atm O2 as the oxidant (Table 3).

The newly developed procedure was found to be different from 
traditional organic reactions, which require pure starting materi-
als. Under the reaction conditions, the mixture of alkyl benzenes 
(4a, 4b and 4d) was transformed into 5a​ with a 60% yield (Fig. 2a), 
which highlights the potential application of this chemistry to trans-
form a crude mixture of aromatic hydrocarbons from the oil and 
coal industry into a single aniline product. Furthermore, we carried 
out gram-scale reactions under O2 conditions which gave a higher 
yield in comparison to the small-scale reaction (Fig. 2a and Table 3). 
These results demonstrate the potential practicability of this proto-
col as well as indicate the possibility for the industrial application of 
this transformation, as with the Hock process.

To evaluate the feasibility of this C–C amination for late-stage 
functionalization, two clinical local anaesthetics, benzocaine (7a​) 
and procaine (7b​), were synthesized from the corresponding sec-
ondary alcohols. As shown in Fig.  2b, a variety of secondary or 
tertiary alcohols (6c–6f) derived from representative pharmaceu-
ticals, which included the antilipaemic gemfibrozil, antipsychotic 
iloperidone, acne-curative adapalene and antihyperglycaemic repa-
glinide, were proven to be tolerated in this protocol and produced 
the corresponding aniline derivatives (7c​–7f​) in good yields. These 
transformations accommodated various functional groups, includ-
ing sensitive esters, amides and N-heterocycles, which suggests the 
mildness and practicality of this protocol.

Biorenewable lignin is regarded as a waste aromatic chemical 
source from the pulp and paper industry38,39. Thus, the extraction 
of higher value-added products from lignin is appealing to satisfy 
an economically sustainable development. Interestingly, the present 
chemistry could be applied in the cleavage of the β​-1 and β​-O-4 
lignin model compounds, which are prevalent chemical linkages 
in lignin from spruce trees. As described in Fig. 2c, 8-β​-1 lignin-T 
and 8-β​-1 lignin-E model compounds could be converted into the 
corresponding 4-methoxyaniline (2c​, 53% and 49% yields, respec-
tively), and the β​-O-4 lignin model compound 9 could be converted 
into 3,4-dimethoxyaniline (10​) in a 40% yield, which provides a 
potentially applicable protocol to depolymerize the biorenewable 
lignin to high value-added chemicals.
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Fig. 1 | Efficient synthesis of anilines. a, The development of aryl C–H primary amination through traditional nitration/hydrogenation processes, transition 
metal catalysis with novel amination reagents, electrochemical catalysis or photoredox catalysis with the formation of the mixed regioisomers products. 
b, Long-standing unsolved problems in the direct primary amination of arene C–H bonds: difficulties in the separation of regioisomers, limited substrate 
scope, multisteps required for selective para- or ortho-amination, selective meta-amination of electron-rich arenes remains difficult and challenging 
amination of electron-deficient arenes. c, The Hock process represents one of the most successful transformations of the alkylarenes. However, other 
transformations of alkylarenes, such as the previously elusive C–C amination of cumene to aniline are still unknown. d, This work can address the above 
problems via site-directed C–C amination of the alkylarenes or the corresponding benzyl alcohols. EDG, electron-donating group; FG, functional group. 
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To make a clear comparison between the Friedel–Crafts alkyla-
tion followed by dealkylation pathway and the direct electrophilic 
nitration-and-reduction sequence, we conducted further experi-
ments to clarify some preferable results (Fig.  2d). As reported45, 
the simple benzene 11 and cyclohexylbenzene 4d were used in the 
electrophilic Friedel–Crafts alkylation reaction for the selective and 
efficient synthesis of 1,3,5-tricyclohexylbenzene 12​, which could 

then be highly efficiently converted into 3,5-dicyclohexylaniline 13​ 
by our present selective C–C primary amination process (Fig. 2d.). 
These transformations could even be carried out in a one-pot reac-
tion with a high efficiency (Fig.  2d). In contrast, the nitration of 
4d can only afford the mixture of ortho- and para-cyclohexyl nitro-
benzene (Supplementary Section F). The direct nitration/reduction 
of 1,3-disubstituted arenes did not produce the 3,5-disubstituted  
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Reaction A: reactions were performed with 1 (0.30 mmol), NaN3 (0.75 mmol) and DDQ (0.45 mmol) in TFA (1.0 ml) at 40 °C under air for 4 h. Isolated yield. Reaction B: unless otherwise indicated, 
reactions were performed with 3 (0.30 mmol), NaN3 (0.75 mmol) and TFA (3.6 mmol), MeSO3H (1.8 mmol) (as the acid) in n-hexane (1.0 ml) at 40 °C under air for 4 h. aTFA (5.4 mmol) was used as the 
acid. bMeSO3H (7.2 mmol) was used as the acid. cThe crude product was tert-butoxycarbonyl protected by Boc2O after the reaction.

aniline 13​ because of the strong orientation effect of the two alkyl 
groups, but instead produced a mixture of 2,6-disubstituted and 
2,4-disubstituted anilines46. In addition, this protocol provides an 
efficient and concise synthetic method for the synthesis of 3,5-disub-
stituted anilines from simple arenes. For example, 3,5-dicyclohex-
ylaniline 13​47 is often produced through multiple steps from the 
prefunctionalized nitrobenzene derivatives, compared to our one-
pot method, which starts from the simple benzene 11 and cyclo-
hexylbenzene 4d.

To compare our method with the traditional nitration/reduction 
process, we conducted other experiments to demonstrate the regiose-
lectivity and compatibility of the Friedel–Crafts acylation, reduction  
and C–C amination process (Fig.  2e). For example, the simple 

cyclohexylbenzene 4d48 and toluene 4l49 were selectively acylated at 
the para-position of the alkyl group to form the 4-alkyl-substituted 
acetophenones, which were then reduced with NaBH4 to the cor-
responding secondary benzyl alcohols (14​ and 15​, respectively). 
Following our presented protocol, the alcohols could then be con-
verted into the 4-alkyl-substituted anilines 16​ and 17​, respectively 
(Fig. 2e). In contrast, the direct nitration and reduction sequence 
of toluene 4l and cyclohexylbenzene 4d50 provided a mixture of 
the aniline and nitration products (Supplementary Section  F). 
Moreover, the nitration conditions are normally harsh with a strong 
oxidation ability, which means that some functional groups could 
not be compatible (Fig. 2f). An example of this is the thioether sub-
stituent, which could not be tolerated in the traditional nitration 

Table 1 | Substrate scope for the aniline synthesis from isopropylbenzene derivatives and secondary alcohols
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C–C primary amination was proposed (Fig. 3d). First, the alkylar-
enes is oxidized to carbon cation, followed by an immediate attack 
from NaN3 to generate the benzyl azide intermediate. Finally, the 
protonated azido intermediate under acidic conditions undergoes 
rearrangement and a subsequent hydrolysis process to produce the 
desired anilines.

Conclusions
This chemistry demonstrates a novel direct C–C bond transforma-
tion. The dealkylating C–C amination described here enables the 
efficient and site-directed preparation of anilines from the widely 
available alkylarenes. The common chemical linkage in the lignin 
could also be cleaved to give the corresponding value-added ani-
lines. The present transformation can be accomplished with O2 as 
the environmentally benign oxidant through a one-pot procedure. 
Furthermore, the readily available secondary alcohols can also be 
efficiently and selectively transformed into the corresponding ani-
lines without any oxidant. This protocol features easily accessible 
hydrocarbon substrates, operationally simple conditions and a high 
site selectivity. It provides an alternative advance in the develop-
ment of amination chemistry and demonstrates a great potential in 
the academic and industrial preparation of substituted anilines.

Methods
The general procedure for the C–C amination of alkylarenes is as follows. A 
20 ml vial equipped with a magnetic stirring bar was charged with alkylarenes 
(0.3 mmol, 1 equiv.), NaN3 (0.75 mmol, 2.5 equiv.), DDQ (0.45 mmol, 1.5 equiv.) and 
trifluoroacetic acid (TFA) (1.0 ml, 0.3 M). The vial was sealed and stirred under air 
at 40 °C for 4 h. On completion, the reaction mixture was quenched by 2 M NaOH 
(5 ml), extracted by ethyl acetate (5 ×​ 2 ml) and the combined organic phase was 
washed with brine and dried over Na2SO4. Then the mixture was concentrated and 
purified by flash chromatography on a short silica gel column.

The general procedure for the C–C amination of secondary alcohols is as 
follows. A 20 ml vial equipped with a magnetic stirring bar was charged with 
secondary alcohols (0.3 mmol, 1 equiv.), NaN3 (0.75 mmol, 2.5 equiv.), n-hexane 
(1.0 ml, 0.3 M) and TFA (5.4 mmol, 18 equiv.) or a mixture of TFA (3.6 mmol, 
12 equiv.) and MeSO3H (1.8 mmol, 6 equiv.). The vial was sealed and stirred under 
air at 40 °C for 4 h. On completion, the reaction mixture was quenched by 2 M 
NaOH (5 m), extracted by ethyl acetate (5 ×​ 2 m) and the combined organic phase 
was washed with brine and dried over Na2SO4. Then the mixture was concentrated 
and purified by flash chromatography on a short silica gel column.

Data availability
Full experimental procedures and spectral data for all the new compounds as well 
as computational details are included in the Supplementary Information and are 
available from the corresponding authors on request.
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